AD-409 85-3 FINAL BERGER W255 20 STRUCTURAL DEVELOPMENT TEST CASE M215.07 MTI-480 WEAPON SYSTEM 133A 22 July 1963 Contract Number AF 04(647)-243 Exhibit D, Paragraph IV.A.3 Prepared by HERCULES POWDER COMPANY CHEMICAL PROPULSION DIVISION Bacchus Works Magna, Utah Prepared for HEADQUARTERS AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE Los Angeles, California REPRODUCED FROM BEST AVAILABLE COPY # HERCULES POWDER COMPANY NCORPORATED P. O. BOX 98 MAGNA, UTAH 22 July 1963 IN REPLY REFER TO: 1/4/10-713 Headquarters Ballistic Systems Division Air Force Systems Command Norton Air Force Base California Attention: BSRPQ-1 Subject: "Final Report W2SD-20 Structural Development Test," Case M215.07, Report Number MTI-480, dated 22 July 1963, Contract AF 04(647)-243, Minuteman Stage III Rocket Motor M-57; WS-133A Reference: Exhibit "D," Paragraph IV.A.3 Gentlemen: In accordance with Exhibit "D" to Contract AF 04(647)-243, one copy of the subject report is hereby submitted. Very truly yours, R. BONNER, SUPERINTENDENT AF CONTRACT SUPPORT JRB:JLMORSE:dd Encl (Copy No. 1 of Report No. MTI-480) cc: J. E. Greer (wo/encl) Wilmington Hercules Powder Contract Management Office AF Plant 81 Magna, Utah W. E. Howell (wo/encl) then the Old T Wilmington Attn: Lt. Col. L. C. Wampler, Chief (wo/encl) J. L. Smout (wo/encl) ١ Report No. MTI-480 Copy No.____ Date 22 July 1963 FINAL REPORT W2SD-20 STRUCTURAL DEVELOPMENT TEST CASE M215.07 Prepared by Development Engineer Minuteman Design Reviewed by Reviewed by Approved by Supervisor Wing I - V Design . L. Knearem Superintendent Wing I-V Minuteman Project ## FOREWORD This report outlines work accomplished by the Case Design Group, Chemical Propulsion Division at the Bacchus Works of Hercules Powder Company for the continued development of Minuteman stage III Rocket Motor M-57. Authority for preparation of this report is granted by Contract AF 04(647)-243, Exhibit D, Paragraph IV.A.3. Published by The Publications Group Graphic Services Department HERCULES POWDER COMPANY Bacchus Works Magna, Utah #### **ABSTRACT** Structural development test W2SD-20, case M215.07 was conducted 2 July 1962 at the Bacchus Works. Hercules Powder Company, to determine the structural integrity of the Wing II M-57E1 motor case when subjected to flight load conditions of axial load, shear load, and bending moment conducted under room temperature conditions. Case M215.07 failed just forward of the thrust termination (TT) ports at an axial load of 57.87 kips, a shear load of 7.3 kips, and a bending moment of 865.8 in-kips in the area of failure. Test results show that the equivalent axial load was 150.25 kips, the Poisson's ratio was 0.1711 and the modulus of elasticity was 4.20×10^6 psi. These values are for the area of failure. It was concluded that the Wing II design wase is capable of meeting and exceeding present design requirements specified in Boeing Document No. D2-3877-4. # TABLE OF CONTENTS | <u>Bection</u> | Page | |----------------|------|------|------|-----|------|-----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|----|---|---|---|---|------| | | Fore | word | | | | | | | | | | | • | | | | | | | | •. | : | | | | 111 | | | Abst | ract | iv | v1 | vi | | I | INTR | ODUC | TION | ı | A. | Pur | pose | 1 | | | В. | Tes | t Ob | jec | tiv | es | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | ī | | II | TECH | NICA | L DI | SCU | SS 1 | ON: | A. | Tes | t Sp | eci | men | D | es | cr | ip | ti | on | | | | | | | | | | | | | | | 2 | | | В. | Tes | t Pr | oce | dur | es | | | • | | | | | | | | | | | | | | | | | 3 | | | c. | | t Re | III | CONC | LUSI | ONS | | | | | | _ | | | | | | | | _ | | | | | _ | | | | 6 | # LIST OF FIGURES | Number | <u>Title</u> | Page | |--------|---|------| | 1 | Specimen Reinforcement Diagram | . 7 | | 2 | Test W2SD-20 Instrumentation Location · · · · · · · · · · · · · · · · · · · | . 8 | | 3 | Test Setup | . y | | 4 | Programmed Loads (Y-T Plots) | 10 | | 5 | P ₁ Compressive Loads vs Time Trace | . 11 | | 6 | P ₂ Compressive Loads vs Time Trace | 12 | | 7 | P ₃ Shear Load vs Time Trace | 13 | | 8 | Hoop Strain vs Time | . 14 | | 9 | Longitudinal Strain vs Time | 16 | | 10 | Rosette Gage Strain vs Time | 18 | | 11 | Deflection vs Time | . 20 | | 12 | Failure Area, 0° | . 22 | | 13 | Failure Area, 90° | 23 | | | | | | | LIST OF TABLES | | | Number | <u>Title</u> | Page | | 1 | Strain Data, Hoop Direction | 24 | | II | Strain Data, Longitudinal Direction | . 25 | | III | Rosette Strain Data, Cylindrical Section | 2.5 | | IV | Rosette Strain Data, TT Port Area | . 27 | | 17 | Defication Data | 29 | #### SECTION I #### INTRODUCTION #### A. PURPOSE Structural development test W28D-20 was conducted as a part of a continued development program in the development of a lighter weight case for the third stage Minuteman. This test was one of a series intended to prove the new design in meeting or exceeding structural design requirements specified in Boeing Document No. D2-3877-4. This test obtained information determining the structural integrity of the cylindrical section of the Wing II M-57E1 motor case under simulated flight requirements of axial load, shear load, and bending moment at room temperature. The test was conducted 2 July 1962 by Hercules Powder Company at facilities located at Bacchus, Utah. #### B. TEST OBJECTIVES Test objectives were: - (1) To determine the physical capabilities of the lightweight Wing II M-57El motor case under combined external loading of axial load, shear load, and bending moment at room temperature. - (2) To determine modulus of elasticity and Poisson's ratio values for the critical areas of the case at room temperature. #### SECTION II #### TRCHNICAL DISCUSSION #### A. TEST SPECIMEN DESCRIPTION The test specimen was a standard Wing II motor case (Ref: HPC drawing 01A00221) number M215.07 constructed of Spiralloy. The nominal outside diameter was 37.5 in. and the distance between tangent lines was 43.0 in. Case configuration is described in the following paragraphs: #### 1. Cylindrical Section The cylindrical section of the case consisted of seven layers of 90° windings and six layers of 14.5° helical windings; the thrust termination (TT) port areas were each additionally reinforced with six glass wafers and six TT ply mats. The theoretical thickness was 0.16 in. except in the TT port reinforced area. (The case was pressurized to 50 psig to simulate the structural support received from propellant.) #### 2. Domes The forward and aft domes were wound with four layers of 14.5° windings. The nozzle port areas on the aft dome were additionally reinforced with four glass wafers 16, 17, 18, and 19 in. diameter, respectively. The minimum theoretical thickness at the tangent line was 0.06 in. #### 3. Forward Skirt The forward skirt buildup consisted of two layers of 14.5° windings, nine layers of reverse 143-weave glass cloth, one layer of 90° windings and three layers of 90° nylon roving. The nominal wall thickness was 0.17 in. and the length was 12.575 in., measured from the forward tangent line. For additional reinforcement, a 0.250 in. thick aluminum ring sleeve (Figure 1) was internally bonded to the inner surface of the skirt to ensure that failure would occur in the cylindrical section of the case. #### 4. Aft Skirt The aft skirt buildup consisted of two layers of 14.5° windings, 22 layers of reverse 143-weave glass cloth, one layer of 90° winding, and three layers of 90° nylon roving. The nominal wall thickness was 0.313 in. and the length, measured from the aft tangent line, was 6.2 in. In the manufacture of this case, the resin went through a two-cycle cure. Lamination materials used were Union Carbide's ERLA 2256 resin and HTS 144 ends/in. glass roving. In preparation for the test, a metal-reinforced R & D section was attached to the forward skirt and a reinforce second-to-third stage interstage section was fastened to the aft skirt. #### B. TEST PROCEDURES After installation of the instrumentation (Figure 2), the assembly was mounted in an upright position in the compression load testing device as shown in Figure 3. This device consisted of three hydraulic rams designated P_1 , P_2 , and P_3 . Ram P_1 was positioned on the base at point 0° and ram P_2 at 180° . P_3 was mounted on the crosshead 70 in. forward from the center of the TT port area at 180° . The force from P_3 was normal to the longitudinal centerline of the case. The instrumentation was attached to the recorders and checked for accuracy (polarity, calibration). Next, the load was applied as programmed on the Y-T plot (Figure 4). #### C. TEST RESULTS The test results outlined below indicate that test objectives were satisfactorily met. Actual traces of the applied loads are shown in Figures 5 through 7. Test data are shown graphically in Figures 8 through 13 and are listed in Tables I through IV. The mode of failure was a circumferential buckling of the cylindrical section approximately 10 in. forward of the thrust termination (TT) ports. #### 1. Physical Capabilities Ultimate capability of the case in the area of failure was: - (a) Axial load = 57.87 kips - (b) Shear load = 7.3 kips - (c) Bending moment = 865.8 in. -kips The equivalent axial load for the above condition is 150.25 kips. This load was calculated using the following equation: $$P_{eq} = P_a + 2 M/R$$ where: P = equivalent axial load P = applied axial load M = aprlied bending moment R = radius of the case The loads experienced by the forward and aft tangent line at time of failure are: | | | Fwd Tan. Line | Aft Tan. Line | |-----|----------------|---------------|----------------| | (a) | Axial load | 57.87 kips | 57.87 kips | | (ъ) | Shear load | 7.3 kips | 7.3 kips | | (c) | Bending moment | 697.9 in-kips | 1011.8 in-kips | | (d) | P
eq | 132.35 kips | 165.83 in-kips | The final design requirements for the forward and aft tangent line per Boeing Document Number D2-3877-4 are: | | | Fwd. Tan. Line | Aft Tan. Line | |-----|----------------|----------------|---------------| | (a) | Axial load | 23.1 kips | 47.4 kips | | (b) | Shear load | 6.53 kips | 4.9 kips | | (c) | Bending moment | 483.3 in-kips | 727.9 in-kips | | (d) | Peq | 74.88 kips | 125.1 in-kips | For the above structural requirements (max. q α condition) the theoretical Spiralloy surface temperature if 150° F. At 150° F the ultimate structural capability of the case goes down 7 percent. Therefore, multiplying the ultimate case capability by 0.93 gives an equivalent ultimate capability of the case at the surface temperature of 150° F. The ultimate case capability then becomes 123.1 kips for the forward tangent line, 139.7 kips for the area of failure, and 154.2 kips for the aft tangent line. Design requirements include a factor of safety of 1.25. The ultimate case capabilities show a margin of safety above design requirements in excess of 1.64 for the forward tangent line and 1.23 for the aft tangent line. If a linear load distribution is assumed between the forward and aft tangent line, the required equivalent axial load for the area of failure is approximately 99.6 kips. Using this value the margin of safety in the area of failure, in excess of design requirements, is 1.40. ## 2. Physical Properties į Values for Poisson's ratio were calculated using strain gages 0, P, R1-B and R1-C. R1-B was used instead of gage R1-A because upon examination of the data it was apparent that the gages were switched in position to that shown in Figure 2. Using the above gages the average value of Poisson's ratio at time of failure was 0.1711. Values for the compressive modulus of elasticity were calculated from strain gage S and EDI-9. The modulus (E) for the cylindrical section (failure area) at time of failure as calculated from EDI-9 was 4.20×10^6 psi. The modulus for the area between TT ports as calculated from strain gage S was 3.39×10^6 psi. This value was also calculated at time of failure. These values agree with past test data. Remaining instrumentation gave a wide variation of values for Poisson's ratio and modulus (E). The reason for this variation is unknown # SECTION III # CONCLUSIONS The Wing II design case is capable of meeting and exceeding the present design requirements specified in Boeing Document No. D2-3877-4. Figure 1. Specimen Reinforcement Diagram Figure 2. Test W2SD-20 Instrumentation Location Figure 3. Test Setup Figure 4. Programmed Loads (Y-T Plots) Figure 6. P2 Compressive Loads vs Time Trace Figure 7. P3 Shear Load vs Time Trace Figure 8. Hoop Strain vs Time (Sheet 1 of 2) Figure 8. Hoop Strain vs Time (Sheet 2 of 2) Pigure 9. Longitudinal Strain vs Time (Sheet 1 of 2) Figure 9. Longitudinal Strain vs Time (Sheet 2 of 2) Figure 10. Rosette Gage Strain vs Time (Sheet 1 of 2) Figure 10. Rosette Gage Strain vs Time (Sheet 2 of 2) Figure 10. Rosette Gage Strain vs Time (Sheet 2 of 2) Figure 10. Rosette Gage Strain vs Time (Sheet 2 of 2) Figure 11. Deflection vs Time (Sheet 2 of 2) TABLE 1 STRAIN DATA, HOOP DIRECTION | | Time (sec) | (ca | | | | | | | | | | |---------|----------------------------------|----------|-----------|------|------|-------|-----------|-------|-------|--|--| | Gage | -34.0 | 0 | 13 | 20 | 30 | 35 | 07 | 45 | 97 | | | | Number | Pressure (p | e (psig) | | | | | | | | | | | | 0 | 10.0 | 10.3 | 15.0 | 22.3 | 26.1 | 40.0 | 53.7 | 57.8 | | | | В | 0 | -72 | -224 | -368 | -465 | -561 | -729 | -1041 | -1145 | | | | Ω | 0 | 16 | 24 | 07 | 79 | 32 | 72 | 176 | 176 | | | | ы | 0 | 8 | 8 | 16 | 32 | 70 | 79 | 72 | 80 | | | | Ħ | 0 | 80 | 96- | -144 | -192 | -224 | -192 | -160 | -152 | | | | 24 | 0 | 8 | 8 | 91 | 87 | 56 | 07 | 16 | 16 | | | | BB | 0 | 0 | 0 | 8- | -24 | -16 | -16 | 8- | 0 | | | | ΩΩ | 0 | 24 | 8- | 8- | 8- | -16 | 8 | 79 | 80 | | | | 2 | 0 | 8 | 0 | 8 | 24 | 64 | 112 | 128 | 240 | | | | K | 0 | 0 | 0 | 0 | 91 | 40 | 72 | 96 | . 96 | | | | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 77 | 95 | 64 | | | | T | 0 | -104 | -384 | -617 | 1001 | -1202 | 1522 | -1842 | -1874 | | | | Minus s | Minus sign indicates compression | ates con | npression | e | | | | | | | | TABLE II STRAIN DATA, LONCITUDINAL DIRECTION | | Time (sec) | (); | | | | | | | | | | |----------|---------------------|--------|-------------|------|------|------|------|------|------|---|--| | Gage | -34 | 0 | 13 | 20 | 30 | 35 | 40 | 45 | 97 | | | | Number | Pressure (psig) | (psig) | | | | | | | | | | | | 0 | 10.0 | 10.3 | 15.0 | 22,3 | 26.1 | 40.0 | 53,7 | 57.8 | | | | Y | 0 | 99 | 112 | 192 | 304 | 384 | 240 | -409 | -561 | | | | ၁ | 0 | 0 | 0 | 8- | -72 | 96- | -168 | -296 | -312 | | | | Ą | 0 | -56 | -24 | -64 | -104 | -160 | -256 | -320 | -336 | | | | ტ | 0 | 0 | 88 | 104 | 144 | 176 | 160 | 112 | 96 | | | | 8 | 0 | 8- | 08 | 120 | 224 | 296 | 248 | 176 | 168 | : | | | W | 0 | -16 | 240 | 320 | 433 | 505 | 441 | 336 | 328 | | | | သ | 0 | 8- | 168 | 248 | 360 | 417 | 392 | 240 | 224 | | | | H | 0 | 8- | -32 | -56 | -72 | -80 | -88 | -72 | 8 | | | | 1 | 0 | 95- | 07- | -56 | -120 | -200 | -320 | -409 | -441 | | | | <u>a</u> | 0 | -56 | 8- | -24 | -48 | -80 | -216 | -320 | -336 | | | | S | 0 | 0 | -32 | -48 | -80 | -112 | -136 | -144 | -144 | | | | Minus s | Minus sign indicate | ایما | compression | | | | | | | | | TABLE III ROSETTE STRAIN DATA, CYLINDRICAL SECTION | | Time (sec) | (ca | | | | | | | | | | |---------|----------------------|----------|-------------|------|------|------|------|------|------|--|--| | Gage | -34.0 | 0 | 13 | 20 | 30 | 35 | 40 | 45 | 94 | | | | Number | Pressure (psig) | e (psig) | | | | | | | | | | | | 0 | 10.0 | 10.3 | 15.0 | 22.3 | 26.1 | 40.0 | 53.7 | 57.8 | | | | R1-A | 0 | -56 | -32 | -56 | -88 | -112 | -216 | -312 | -320 | | | | R1-B | 0 | -26 | -140 | -204 | -324 | -406 | -478 | -556 | -580 | | | | R1-C | 0 | 8 | 8 | 16 | 24 | 32 | 56 | 80 | 88 | | | | R2-A | 0 | 28 | 164 | 235 | 355 | 643 | 383 | 223 | 184 | | | | R2-B | 0 | -16 | 42 | 62 | 102 | 126 | 96 | 14 | -8 | | | | R2-C | 0 | 4 | -62 | -86 | -126 | -150 | -140 | -100 | -92 | Minus s | Minus sign indicates | ates com | compression | | | | | | | | | TABLE IV ROSETTE STRAIN DATA, IT PORT AREA | | Time (sec) | (ca | | | | | | | | | | |---------|----------------------|----------|-------------|------|------|------|------|------|------|---|--| | Gage | -34 | 0 | 13 | 20 | 30 | 35 | 70 | 45 | 97 | | | | Number | Pressure | e (psig) | | | | | | | | i | | | | 0 | 10.0 | 10.3 | 15.0 | 22.3 | 26.1 | 40.0 | 53.7 | 57.8 | | | | R3-A | 0 | -12 | 09 | 78 | 132 | 156 | 140 | 100 | 92 | | | | R3-B | 0 | 0 | -16 | -22 | -28 | -30 | -36 | -56 | 09- | | | | R3-C | 0 | 2 | -40 | -56 | -84 | -100 | -92 | -72 | 99- | | | | R4-A | 0 | 0 | 136 | 200 | 291 | 359 | 319 | 239 | 227 | | | | R4-B | 0 | 0 | 0 | 2 | 20 | 34 | 36 | 36 | 30 | | | | R4-c | 0 | 7 | -84 | -122 | -178 | -218 | -198 | -144 | -134 | | | | R5-A | 0 | 8- | 52 | 84 | 124 | 156 | 132 | 92 | 84 | | | | R5-B | 0 | 8- | 12 | 26 | 62 | 82 | 70 | 9 | 54 | | | | R5-C | 0 | 9- | -26 | -32 | -30 | -32 | -32 | -32 | -32 | Minus s | Minus sign indicates | [| compression | و | | | | | | | | TABLE V DEFLECTION DATA | | Time (sec) | ec) | | | | | | ; | | | |---------|----------------------|----------|-----------------|---------|-----------------|--|---------|-----------------|---------|--| | Gage | -34 | a | 13 | 20 | 30 | 35 | 40 | 4.5 | 97 | | | Number | Pressure (ps | e (psig) | | | | | | | | | | | 0 | 10.0 | 10.3 | 15.0 | 22.3 | 26.1 | 40.0 | 53.7 | 57.8 | | | EDI-1 | 0 | 0,0002 | 0 | 0.0004 | 0.0014 | 0.0014 | 0.0020 | 0,0040 | 0.0044 | | | EDI-2 | 0 | 0.0020 | 0.0066 | 0.0114 | 0.0180 | 0.0220 | 0.0276 | 0.0340 | 0.0360 | | | EDI-3 | 0 | -0.0010 | -0.0030 | -0.0066 | -0.0104 | -0.0120 | -0.0150 | -0.0180 | -0.0184 | | | EDI-4 | 0 | -0.0002 | 0.0024 | 0.0038 | 0.0058 | 0.0064 | 0.0056 | 0.0044 | 0.0040 | | | EDI-5 | 0 | -0.0002 | 0.0030 | 0.0040 | 0,0060 | 0.0074 | 0.0060 | 0.0036 | 0.0032 | | | EDI-7 | 0 | 0 | 0.0032 | 0.0038 | 0.0054 | 0,0060 | 0.0046 | 0.0024 | 0.0020 | | | EDI-8 | 0 | -0.0016 | -0.0016 -0.0040 | -0,0060 | -0.0060 -0.0094 | -0.0106 -0.0120 | | -0.0136 -0.0140 | -0.0140 | | | EDI-9 | 0 | -0.0018 | -0.0076 | -0.0124 | -0.0220 | 18 -0.0076 -0.0124 -0.0220 -0.0270 -0.0336 -0.0398 -0.0400 | -0.0336 | -0.0398 | -0.0400 | | | EDI-10 | 0 | -0.0136 | 0.0068 | -0.0012 | -0.0172 | -0.0268 | -0.0692 | -0.1080 | -0.1172 | | | EDI-11 | 0 | 0.0012 | -0.0108 | -0.0200 | -0.0356 | -0.0568 | -0.0488 | -0.0348 | -0.0328 | | | | | | | | | | | | | | | Minus s | Minus sign indicates | | compression | ū | | | | | | | | | | | | | | | | | | | # DISTRIBUTION LIST # FINAL REPORT W2SD-20 STRUCTURAL DEVELOPMENT TEST (U) # MTI-480 | Copy No. | Recipient | Mail Stop | |------------|--|-----------| | 1 | Hq. BSD (AFSC), Norton AFB; Attn: BSRPQ-1 | | | 2 | Hq. BSD (AFSC), Norton AFB; Attn: BSRPQ-2 | | | 3 | STL, Norton AFB; Attn: Mr. R. L. Greengard | | | 4 thru 8 | STL, Redondo Beach; Attn: Mr. R. J. Brown | | | 9 thru 18 | Armed Services Technical Information Agency, | | | | Arlington 12, Virginia | | | 19 thru 22 | Central Intelligence Agency, Washington 25, D. C | • | | 23 | HQ OOAMA (OOYI), Hill AFB, Utah | | | 24 | ABL; Attn: Mr. J. C. Foster | | | 25 | HPC, Rocky Hill; Attn: Mr. L. B. Johnston | | | 26 | D. W. Austin | 100-K-2-8 | | 27 | T. W. Barnes | 100-K-2-6 | | 28 | G. M. Crook | 11-K-2-8 | | 29 | R. E. Folsom | 111 | | 30 | R. G. Foust | 100-K-1-6 | | 31 | W. L. Gunter | 100-K2-0 | | 32 | M. F. Jensen | 11-K-2-8 | | 33 | J. L. Knearem | 100-K-2-0 | | 34 | T. I. Lester | 11-K-2-8 | | 3 5 | J. H. Main | 505 | | 36 | R. R. Russell | 100-K2-6 | | 37 | J. N. Sherman/R. L. Schaefer/J. N. Bohn | 100-K-1-0 | | 38 | E. F. Shultz | 100-K-2-0 | | 39 | D. E. Wachs | 703 | | 40 | E. P. Whaley | 100-B | | 41, 42 | Publications Library | 702 | | 43, 44 | Library/Central File | 509-C | | | J. L. Morse (letter only) | 502 | | | A. H. Nielson (letter only) | 81-16-1 | | | S. E. Patti (letter only) | |